Molecules and mechanisms that regulate multipolar migration in the intermediate zone
نویسنده
چکیده
Most neurons migrate with an elongated, "bipolar" morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become "multipolar". Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically-sideways, up and down. Multipolar cells extend axons while they are in the lower half of the IZ. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia (RG) fibers. This reorientation implies the existence of directional signals in the IZ that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex.
منابع مشابه
Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex.
Cerebral cortical neurons are known to be produced from both apical progenitors in the ventricular zone (VZ) and basal (intermediate) progenitors in the subventricular zone (SVZ). On the other hand, we have shown that many SVZ cells assume multipolar morphology and show a characteristic movement termed "multipolar migration." The relationship between multipolar cells and basal progenitors in th...
متن کاملMultipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex.
Two distinct modes of radial neuronal migration, locomotion and somal translocation, have been reported in the developing cerebral cortex. Although these two modes of migration have been well documented, the cortical intermediate zone contains abundant multipolar cells, and they do not resemble the cells migrating by locomotion or somal translocation. Here, we report that these multipolar cells...
متن کاملCdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex
During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific up...
متن کاملDynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate
Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is...
متن کاملADAM17 Is Critical for Multipolar Exit and Radial Migration of Neuronal Intermediate Progenitor Cells in Mice Cerebral Cortex
The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17) is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014